# -*- coding: utf-8 -*-
"""
Functions that are not fuzzy-specific, but util for some computations.
Dedicated mostly to compute quantiles for fuzzy partitions.
"""
import numpy as np
import pandas as pd
try:
from . import fuzzy_sets as fs
from . import maintenance as mnt
from . import temporal
from . import rules
from . import eval_rules as evr
except ImportError:
import fuzzy_sets as fs
import maintenance as mnt
import temporal
import rules
import eval_rules as evr
from sklearn.model_selection import train_test_split
[docs]
def quartile_compute(x: np.array) -> list[float]:
'''
Computes the quartiles for each feature.
:param x: array samples x features
:return: list of quartiles for each feature
'''
return np.quantile(x, [0, 0.25, 0.5, 1], axis=0)
[docs]
def fixed_quantile_compute(x: np.array) -> list[float]:
'''
Computes a series of quantiles for each feature in numpy array.
Quantiles: [0, 0.20, 0.30, 0.45, 0.55, 0.7, 0.8, 1]
:param x: array samples x features
:return: list of quantiles for each feature
'''
return np.quantile(x, [0, 0.20, 0.30, 0.45, 0.55, 0.7, 0.8, 1], axis=0)
[docs]
def partition3_quantile_compute(x: np.array) -> list[float]:
'''
Computes a series of quantiles partitioning the variable in 3 cases.
Quantiles: [0.00, 0.20, 0.50, 0.80, 1.00]
:param x: array samples x features
:return: list of quantiles for each feature
'''
return np.quantile(x, [0, 0.20, 0.50, 0.80, 1.00], axis=0)
[docs]
def t1_simple_partition(x: np.array) -> np.array:
'''
Partitions the fuzzy variable in four trapezoidal memberships.
:param x: numpy array, vector of shape (samples, ).
:return: numpy array, vector of shape (variables, 4, 4).
'''
n_partitions = 4
trap_memberships_size = 4
quantile_numbers = fixed_quantile_compute(x)
partition_parameters = np.zeros(
(x.shape[1], n_partitions, trap_memberships_size))
for partition in range(n_partitions):
if partition == 0:
partition_parameters[:, partition, 0] = quantile_numbers[0]
partition_parameters[:, partition, 1] = quantile_numbers[0]
partition_parameters[:, partition, 2] = quantile_numbers[1]
partition_parameters[:, partition, 3] = quantile_numbers[2]
elif partition == n_partitions - 1:
partition_parameters[:, partition, 0] = quantile_numbers[-3]
partition_parameters[:, partition, 1] = quantile_numbers[-2]
partition_parameters[:, partition, 2] = quantile_numbers[-1]
partition_parameters[:, partition, 3] = quantile_numbers[-1]
else:
pointer = 1 if partition == 1 else 4
partition_parameters[:, partition, 0] = quantile_numbers[pointer]
partition_parameters[:, partition,
1] = quantile_numbers[pointer + 1]
partition_parameters[:, partition,
2] = quantile_numbers[pointer + 2]
partition_parameters[:, partition,
3] = quantile_numbers[pointer + 3]
return partition_parameters
[docs]
def compute_quantiles(x, n_partitions):
'''
Computes the quantiles needed for n-partition fuzzy membership.
:param x: numpy array, vector of shape (samples, ).
:param n_partitions: int, number of partitions.
:return: numpy array, quantiles for partitioning.
'''
quantiles = np.linspace(0, 100, n_partitions + 2)
return np.nanpercentile(x, quantiles, axis=0)
[docs]
def t1_n_partition_parameters(x, n_partitions):
'''
Partitions the fuzzy variable in n trapezoidal memberships.
:param x: numpy array, matrix of shape (samples, variables).
:param n_partitions: int, number of partitions.
:return: numpy array, tensor of shape (variables, n_partitions, 4) containing the trapezoidal parameters.
'''
trap_memberships_size = 4
n_variables = x.shape[1]
quantile_numbers = compute_quantiles(x, n_partitions)
# Initialize the array for partition parameters
partition_parameters = np.zeros((n_variables, n_partitions, trap_memberships_size))
for partition in range(n_partitions):
if partition == 0: # First partition
partition_parameters[:, partition, 0] = quantile_numbers[0, :]
partition_parameters[:, partition, 1] = quantile_numbers[0, :]
partition_parameters[:, partition, 2] = quantile_numbers[1, :]
partition_parameters[:, partition, 3] = quantile_numbers[2, :]
elif partition == n_partitions - 1: # Last partition
partition_parameters[:, partition, 0] = quantile_numbers[partition, :]
partition_parameters[:, partition, 1] = quantile_numbers[partition + 1, :]
partition_parameters[:, partition, 2] = quantile_numbers[partition + 2, :]
partition_parameters[:, partition, 3] = quantile_numbers[partition + 2, :]
else: # Intermediate partitions
partition_parameters[:, partition, 0] = quantile_numbers[partition, :]
partition_parameters[:, partition, 1] = (quantile_numbers[partition, :] + quantile_numbers[partition + 1, :] ) / 2
partition_parameters[:, partition, 2] = (quantile_numbers[partition + 1, :] + quantile_numbers[partition + 2, :] ) / 2
partition_parameters[:, partition, 3] = quantile_numbers[partition + 2, :]
return partition_parameters
[docs]
def t1_three_partition(x: np.array) -> np.array:
'''
Partitions the fuzzy variable in three trapezoidal memberships.
:param x: numpy array, vector of shape (samples, ).
:return: numpy array, vector of shape (variables, 3, 4).
'''
n_partitions = 3
trap_memberships_size = 4
quantile_numbers = partition3_quantile_compute(x)
partition_parameters = np.zeros(
(x.shape[1], n_partitions, trap_memberships_size))
for partition in range(n_partitions):
if partition == 0:
partition_parameters[:, partition, 0] = quantile_numbers[0]
partition_parameters[:, partition, 1] = quantile_numbers[0]
partition_parameters[:, partition, 2] = quantile_numbers[1]
partition_parameters[:, partition, 3] = quantile_numbers[2]
elif partition == 1:
partition_parameters[:, partition, 0] = quantile_numbers[1]
partition_parameters[:, partition, 1] = (
quantile_numbers[1] + quantile_numbers[2]) / 2
partition_parameters[:, partition, 2] = (
quantile_numbers[3] + quantile_numbers[2]) / 2
partition_parameters[:, partition, 3] = quantile_numbers[3]
else:
partition_parameters[:, partition, 0] = quantile_numbers[2]
partition_parameters[:, partition, 1] = quantile_numbers[3]
partition_parameters[:, partition, 2] = quantile_numbers[4]
partition_parameters[:, partition, 3] = quantile_numbers[4]
return partition_parameters
[docs]
def t2_n_partition_parameters(x, n_partitions):
'''
Partitions the fuzzy variable in n trapezoidal memberships.
:param x: numpy array, matrix of shape (samples, variables).
:param n_partitions: int, number of partitions.
:return: numpy array, tensor of shape (variables, n_partitions, 4, 2) containing the trapezoidal parameters.
'''
trap_memberships_size = 4
n_variables = x.shape[1]
quantile_numbers = compute_quantiles(x, n_partitions)
# Initialize the array for partition parameters
partition_parameters = np.zeros((n_variables, n_partitions, trap_memberships_size, 2))
for partition in range(n_partitions):
if partition == 0: # First partition
partition_parameters[:, partition, 0, 1] = quantile_numbers[0]
partition_parameters[:, partition, 1, 1] = quantile_numbers[0]
partition_parameters[:, partition, 2, 1] = quantile_numbers[1]
partition_parameters[:, partition, 3, 1] = quantile_numbers[2]
partition_parameters[:, partition, 0, 0] = quantile_numbers[0]
partition_parameters[:, partition, 1, 0] = quantile_numbers[0]
partition_parameters[:, partition, 2, 0] = quantile_numbers[1]
partition_parameters[:, partition, 3, 0] = quantile_numbers[1] + \
0.9 * (quantile_numbers[2] - quantile_numbers[1])
elif partition == n_partitions - 1: # Last partition
partition_parameters[:, partition, 0, 1] = quantile_numbers[partition]
partition_parameters[:, partition, 1, 1] = quantile_numbers[partition + 1]
partition_parameters[:, partition, 2, 1] = quantile_numbers[partition + 2]
partition_parameters[:, partition, 3, 1] = quantile_numbers[partition + 2]
partition_parameters[:, partition, 0, 0] = quantile_numbers[partition] + \
0.1 * (quantile_numbers[partition + 1] - quantile_numbers[partition])
partition_parameters[:, partition, 1, 0] = quantile_numbers[partition + 1]
partition_parameters[:, partition, 2, 0] = quantile_numbers[partition + 2]
partition_parameters[:, partition, 3, 0] = quantile_numbers[partition + 2]
else: # Intermediate partitions
partition_parameters[:, partition, 0, 1] = quantile_numbers[partition, :]
partition_parameters[:, partition, 1, 1] = (quantile_numbers[partition, :] + quantile_numbers[partition + 1, :] ) / 2
partition_parameters[:, partition, 2, 1] = (quantile_numbers[partition + 1, :] + quantile_numbers[partition + 2, :] ) / 2
partition_parameters[:, partition, 3, 1] = quantile_numbers[partition + 2, :]
partition_parameters[:, partition, 0, 0] = quantile_numbers[partition] + \
0.1 * (quantile_numbers[partition + 1] - quantile_numbers[partition])
partition_parameters[:, partition, 1, 0] = (quantile_numbers[partition, :] + quantile_numbers[partition + 1, :] ) / 2
partition_parameters[:, partition, 2, 0] = (quantile_numbers[partition + 1, :] + quantile_numbers[partition + 2, :] ) / 2
partition_parameters[:, partition, 3, 0] = ((quantile_numbers[partition + 1, :] + quantile_numbers[partition + 2, :] ) / 2) + \
0.9 * (quantile_numbers[partition + 2] - ((quantile_numbers[partition + 1, :] + quantile_numbers[partition + 2, :] ) / 2))
return partition_parameters
[docs]
def t1_simple_triangular_partition_parameters(x: np.array) -> np.array:
'''
Partitions the fuzzy variable in three triangular memberships.
:param x: numpy array, vector of shape (samples, ).
:return: numpy array, vector of shape (variables, 3, 3).
'''
n_partitions = 3
trap_memberships_size = 4
#quantile_numbers = partition3_quantile_compute(x)
quantile_numbers = np.nanpercentile(x, [0, 25, 50, 75, 100], axis=0)
partition_parameters = np.zeros(
(x.shape[1], n_partitions, trap_memberships_size))
for partition in range(n_partitions):
if partition == 0:
partition_parameters[:, partition, 0] = quantile_numbers[0]
partition_parameters[:, partition, 1] = quantile_numbers[0]
partition_parameters[:, partition, 2] = quantile_numbers[0]
partition_parameters[:, partition, 3] = quantile_numbers[2]
elif partition == 1:
partition_parameters[:, partition, 0] = quantile_numbers[1]
partition_parameters[:, partition, 1] = quantile_numbers[2]
partition_parameters[:, partition, 2] = quantile_numbers[2]
partition_parameters[:, partition, 3] = quantile_numbers[3]
else:
partition_parameters[:, partition, 0] = quantile_numbers[2]
partition_parameters[:, partition, 1] = quantile_numbers[4]
partition_parameters[:, partition, 2] = quantile_numbers[4]
partition_parameters[:, partition, 3] = quantile_numbers[4]
return partition_parameters
[docs]
def t1_simple_triangular_partition(x: np.array, n_partitions:int=3) -> list[np.array]:
'''
Partitions the dataset features into different fuzzy variables. Parameters are prefixed.
Use it for simple testing and initial solution.
:param x: numpy array|pandas dataframe, shape samples x features.
:return: list of fuzzy variables.
'''
partition_parameters = t1_simple_triangular_partition_parameters(x)
res = []
for fz_parameter in range(partition_parameters.shape[0]):
fzs = [fs.FS(str(ix), partition_parameters[fz_parameter, ix, :], [
np.min(x), np.max(x)]) for ix in range(partition_parameters.shape[1])]
res.append(fs.fuzzyVariable(str(fz_parameter), fzs))
return res
[docs]
def t1_fuzzy_partitions_dataset(x0: np.array, n_partition=3) -> list[fs.fuzzyVariable]:
'''
Partitions the dataset features into different fuzzy variables. Parameters are prefixed.
Use it for simple testing and initial solution.
:param x: numpy array|pandas dataframe, shape samples x features.
:param n_partition: number of partitions to use in the fuzzy variables.
:return: list of fuzzy variables.
'''
if n_partition == 3:
partition_names = ['Low', 'Medium', 'High']
elif n_partition == 5:
partition_names = ['Very Low', 'Low', 'Medium', 'High', 'Very High']
else:
partition_names = [str(ix) for ix in range(n_partition)]
try:
fv_names = x0.columns
x = x0.values
except AttributeError:
fv_names = [str(ix) for ix in range(x0.shape[1])]
x = x0
mins = np.min(x, axis=0)
maxs = np.max(x, axis=0)
fz_memberships = t1_n_partition_parameters(x, n_partitions=n_partition)
res = []
for fz_parameter in range(fz_memberships.shape[0]):
fzs = [fs.FS(partition_names[ix], fz_memberships[fz_parameter, ix, :], [
mins[fz_parameter], maxs[fz_parameter]]) for ix in range(fz_memberships.shape[1])]
res.append(fs.fuzzyVariable(fv_names[fz_parameter], fzs))
return res
[docs]
def t2_fuzzy_partitions_dataset(x0: np.array, n_partition=3) -> list[fs.fuzzyVariable]:
'''
Partitions the dataset features into different fuzzy variables using iv fuzzy sets. Parameters are prefixed.
Use it for simple testing and initial solution.
:param x: numpy array|pandas dataframe, shape samples x features.
:param n_partition: number of partitions to use in the fuzzy variables.
:return: list of fuzzy variables.
'''
if n_partition == 3:
partition_names = ['Low', 'Medium', 'High']
elif n_partition == 5:
partition_names = ['Very Low', 'Low', 'Medium', 'High', 'Very High']
else:
partition_names = [str(ix) for ix in range(n_partition)]
try:
fv_names = x0.columns
x = x0.values
except AttributeError:
fv_names = [str(ix) for ix in range(x0.shape[1])]
x = x0
mins = np.min(x, axis=0)
maxs = np.max(x, axis=0)
fz_memberships = t2_n_partition_parameters(x, n_partition)
res = []
for fz_parameter in range(fz_memberships.shape[0]):
fzs = [fs.IVFS(partition_names[ix], fz_memberships[fz_parameter, ix, :, 0], fz_memberships[fz_parameter, ix, :, 1], [
mins[fz_parameter], maxs[fz_parameter]], lower_height=0.8) for ix in range(fz_memberships.shape[1])]
res.append(fs.fuzzyVariable(fv_names[fz_parameter], fzs))
return res
[docs]
def gt2_fuzzy_partitions_dataset(x0: np.array, resolution_exp:int=2, n_partition=3) -> list[fs.fuzzyVariable]:
'''
Partitions the dataset features into different fuzzy variables using gt2 fuzzy sets. Parameters are prefixed.
Use it for simple testing and initial solution.
:param x: numpy array|pandas dataframe, shape samples x features.
:param resolution_exp: exponent of the resolution of the partition. Default is 2, which means 0.01. (Number of significant decimals)
:param n_partition: number of partitions to use in the fuzzy variables.
:return: list of fuzzy variables.
'''
try:
fv_names = x0.columns
x = x0.values
except AttributeError:
fv_names = [str(ix) for ix in range(x0.shape[1])]
x = x0
mins = np.min(x, axis=0)
maxs = np.max(x, axis=0)
iv_simple_partition = t2_fuzzy_partitions_dataset(x, n_partition=n_partition)
resolution = 10.0**-np.abs(resolution_exp)
res = []
# We iterate through all possible variables
for ix_var, fz_var in enumerate(iv_simple_partition):
domain_resolution = np.arange(
mins[ix_var], maxs[ix_var] + resolution, resolution)
fzs = []
for ix_lv, fz_lv in enumerate(fz_var.get_linguistic_variables()):
memberships = fz_lv.membership(domain_resolution)
fs_domain = {}
for ix_z, x in enumerate(domain_resolution):
membership_z = memberships[ix_z]
fs_domain[x] = fs.FS(str(x), [membership_z[0], np.mean(
membership_z), np.mean(membership_z), membership_z[1]], [0.0, 1.0])
fzs.append(fs.GT2(fz_lv.name, fs_domain, [
mins[ix_var], maxs[ix_var]], significant_decimals=np.abs(resolution_exp), unit_resolution=0.01))
res.append(fs.fuzzyVariable(fv_names[ix_var], fzs))
return res
[docs]
def construct_partitions(X : np.array, fz_type_studied:fs.FUZZY_SETS=fs.FUZZY_SETS.t1, categorical_mask: np.array=None, n_partitions=3) -> list[fs.fuzzyVariable]:
'''
Returns a list of linguistic variables according to the kind of fuzzy specified.
:param X: numpy array|pandas dataframe, shape samples x features.
:param fz_type_studied: fuzzy set type studied.
:param categorial_mask: a boolean mask vector that indicates for each variables if its categorical or not.
:param n_partitions: number of partitions to use in the fuzzy set.
'''
if mnt.save_usage_flag:
mnt.usage_data[mnt.usage_categories.Funcs]['precompute_labels'] += 1
mnt.usage_data[mnt.usage_categories.FuzzySets][fz_type_studied.name] += 1
if isinstance(X, pd.DataFrame):
feat_names = X.columns
X = X.values
else:
feat_names = [str(ix) for ix in range(X.shape[1])]
# Get the X dataframe without the categorical variables
if categorical_mask is not None:
X_numerical = X[:, np.logical_not(categorical_mask)]
else:
X_numerical = X
if sum(np.logical_not(categorical_mask)) > 0:
if fz_type_studied == fs.FUZZY_SETS.t1:
precomputed_partitions = t1_fuzzy_partitions_dataset(X_numerical, n_partitions)
elif fz_type_studied == fs.FUZZY_SETS.t2:
precomputed_partitions = t2_fuzzy_partitions_dataset(X_numerical, n_partitions)
elif fz_type_studied == fs.FUZZY_SETS.gt2:
precomputed_partitions = gt2_fuzzy_partitions_dataset(X_numerical, n_partitions)
else:
raise ValueError('Fuzzy set type not recognized')
if categorical_mask is not None:
categorical_partition = {}
for ix, elem in enumerate(categorical_mask):
if elem:
if isinstance(X, pd.DataFrame):
name = X.columns[ix]
else:
name = str(ix)
cat_var = construct_crisp_categorical_partition(np.array(X)[:, ix], name, fz_type_studied)
categorical_partition[name] = cat_var
# Reorder the partitions so that they follow the same order as in the original X
precomputed_partitions_aux = []
for ix, elem in enumerate(categorical_mask):
if isinstance(X, pd.DataFrame):
name = X.columns[ix]
else:
name = str(ix)
if elem:
precomputed_partitions_aux.append(categorical_partition[name])
else:
precomputed_partitions_aux.append(precomputed_partitions.pop(0))
precomputed_partitions = precomputed_partitions_aux
for ix, partition in enumerate(precomputed_partitions):
partition.name = feat_names[ix]
return precomputed_partitions
def _triangular_construct_partitions(X : np.array, fz_type_studied:fs.FUZZY_SETS=fs.FUZZY_SETS.t1, categorical_mask: np.array=None, n_partitions=3) -> list[fs.fuzzyVariable]:
'''
Returns a list of linguistic variables according to the kind of fuzzy specified.
:param X: numpy array|pandas dataframe, shape samples x features.
:param fz_type_studied: fuzzy set type studied.
:param categorial_mask: a boolean mask vector that indicates for each variables if its categorical or not.
:param n_partitions: number of partitions to use in the fuzzy set.
'''
if mnt.save_usage_flag:
mnt.usage_data[mnt.usage_categories.Funcs]['precompute_labels'] += 1
mnt.usage_data[mnt.usage_categories.FuzzySets][fz_type_studied.name] += 1
if isinstance(X, pd.DataFrame):
feat_names = X.columns
X = X.values
else:
feat_names = [str(ix) for ix in range(X.shape[1])]
# Get the X dataframe without the categorical variables
if categorical_mask is not None:
X_numerical = X[:, np.logical_not(categorical_mask)]
else:
X_numerical = X
if fz_type_studied == fs.FUZZY_SETS.t1:
precomputed_partitions = t1_simple_triangular_partition(X_numerical)
elif fz_type_studied == fs.FUZZY_SETS.t2:
raise NotImplementedError('Triangular partitions not implemented for t2 fuzzy sets')
elif fz_type_studied == fs.FUZZY_SETS.gt2:
raise NotImplementedError('Triangular partitions not implemented for gt2 fuzzy sets')
else:
raise ValueError('Fuzzy set type not recognized')
if categorical_mask is not None:
categorical_partition = {}
for ix, elem in enumerate(categorical_mask):
if elem:
if isinstance(X, pd.DataFrame):
name = X.columns[ix]
else:
name = str(ix)
cat_var = construct_crisp_categorical_partition(np.array(X)[:, ix], name, fz_type_studied)
categorical_partition[name] = cat_var
# Reorder the partitions so that they follow the same order as in the original X
precomputed_partitions_aux = []
for ix, elem in enumerate(categorical_mask):
if isinstance(X, pd.DataFrame):
name = X.columns[ix]
else:
name = str(ix)
if elem:
precomputed_partitions_aux.append(categorical_partition[name])
else:
precomputed_partitions_aux.append(precomputed_partitions.pop(0))
precomputed_partitions = precomputed_partitions_aux
for ix, partition in enumerate(precomputed_partitions):
partition.name = feat_names[ix]
return precomputed_partitions
[docs]
def construct_crisp_categorical_partition(x: np.array, name: str, fz_type_studied: fs.FUZZY_SETS) -> fs.fuzzyVariable:
'''
Creates a fuzzy variable for a categorical feature.
:param x: array with values of the categorical variable.
:param name of the fuzzy variable.
:param fz_type_studied: fuzzy set type studied.
:return: a fuzzy variable that works as a categorical crips variable (each fuzzy set is 1 exactly on each class value, and 0 on the rest).
'''
possible_values = np.unique(x)
fuzzy_sets = []
# Create a fuzzy sets for each possible value
for ix, value in enumerate(possible_values):
if fz_type_studied == fs.FUZZY_SETS.t1:
aux = fs.categoricalFS(str(value), value)
elif fz_type_studied == fs.FUZZY_SETS.t2 or fz_type_studied == fs.FUZZY_SETS.gt2:
aux = fs.categoricalIVFS(str(value), np.unique(x))
fuzzy_sets.append(aux)
return fs.fuzzyVariable(name, fuzzy_sets)
[docs]
def construct_conditional_frequencies(X: np.array, discrete_time_labels: list[int], initial_ffss: list[fs.FS]):
'''
Computes the conditional temporal function for a set of fuzzy sets according to their variation in time.
:param X: numpy array, shape samples x features.
:param discrete_time_labels: discrete time labels.
:param initial_fs: initial fuzzy set list.
:return: conditional frequencies. Array shape (time steps, initial fuzzy sets)
'''
obs = X.shape[0]
discrete_time_labels = np.array(discrete_time_labels)
memberships = np.zeros((obs, len(initial_ffss)))
for ix, fset in enumerate(initial_ffss):
if fset.type() == fs.FUZZY_SETS.t2:
memberships[:, ix] = np.mean(fset.membership(X), axis=1)
elif fset.type() == fs.FUZZY_SETS.gt2:
memberships[:, ix] = np.mean(np.squeeze(fset._alpha_reduction(fset.membership(X))), axis=1)
else:
memberships[:, ix] = fset.membership(X)
max_memberships = np.argmax(memberships, axis=1)
res = np.zeros((len(np.unique(discrete_time_labels)), len(initial_ffss)))
for time in range(len(np.unique(discrete_time_labels))):
relevant_memberships = max_memberships[time == discrete_time_labels]
fs_winner_counter = np.zeros(len(initial_ffss))
for ix, fset in enumerate(initial_ffss):
fs_winner_counter[ix] = np.sum(relevant_memberships == ix)
res[time, :] = fs_winner_counter
return res / (np.max(res, axis=0) + 1e-6)
[docs]
def classify_temp(dates: pd.DataFrame, cutpoints: tuple[str, str], time: str) -> np.array:
'''
Classifies a set of dates according to the temporal cutpoints. Uses {time} as a the time resolution.
Returns an array where true values are those values contained between those two date points.
:param dates: data observations to cut.
:param cutpoints: points to check.
:param time: time field to use as the criteria.
:return: boolean array. True values are those contained between the cutpoints.
'''
def extract_hour(row):
return row.__getattribute__(time)
hours = pd.to_datetime(dates['date']).apply(extract_hour)
cutpoint_series_0 = pd.to_datetime(pd.Series([cutpoints[0]] * len(dates)))
cutpoint_series_0.index = dates.index
hours0 = cutpoint_series_0.apply(extract_hour)
cutpoint_series_1 = pd.to_datetime(pd.Series([cutpoints[1]] * len(dates)))
cutpoint_series_1.index = dates.index
hours1 = cutpoint_series_1.apply(extract_hour)
condicion1 = hours >= hours0
condicion2 = hours <= hours1
return np.array(np.logical_and(condicion1, condicion2))
[docs]
def assign_time(a: np.array, observations: list[np.array]) -> int:
'''
Assigns a temporal moment to a set of observations.
:param a: array of boolean values.
:param observations: list of boolean arrays with the corresponding timestamps.
:return: the index of the correspondent time moment for the a-th observation.
:raises: ValueError if a is not timestamped in any of the observation arrays.'''
for ix, obs in enumerate(observations):
if obs[a]:
return ix
raise ValueError('No temporal moment assigned')
[docs]
def create_tempVariables(X_train: np.array, time_moments: np.array, precomputed_partitions: list[fs.fuzzyVariable]) -> list[temporal.temporalFS]:
'''
Creates a list of temporal fuzzy variables.
:param X_train: numpy array, shape samples x features.
:param time_moments: time moments. Array shape (samples,). Each value is an integer denoting the n-th time moment of that observation.
:param precomputed_partitions: precomputed partitions for each feature.
:return: list of temporal fuzzy variables.
'''
temp_partitions = []
for ix in range(X_train.shape[1]):
feat_conditional = construct_conditional_frequencies(X_train[:, ix], time_moments, initial_ffss=precomputed_partitions[ix])
temp_fs_list = []
for vl in range(feat_conditional.shape[1]):
vl_temp_fs = temporal.temporalFS(precomputed_partitions[ix][vl], feat_conditional[:, vl])
temp_fs_list.append(vl_temp_fs)
temp_fs_variable = temporal.temporalFuzzyVariable(precomputed_partitions[ix].name, temp_fs_list)
temp_partitions.append(temp_fs_variable)
return temp_partitions
[docs]
def create_multi_tempVariables(X_train: np.array, time_moments: np.array, fuzzy_type: fs.FUZZY_SETS) -> list[list[temporal.temporalFS]]:
'''
Creates a of list of lists of temporal fuzzy variables. Each corresponds to a fuzzy partition in a different moment in time.
(So, instead of having one vl for all time moments, you have one different for each time moment that represents the same idea)
:param X_train: numpy array, shape samples x features.
:param time_moments: time moments. Array shape (samples,). Each value is an integer denoting the n-th time moment of that observation.
:param precomputed_partitions: precomputed partitions for each feature.
:return: list of lists of temporal fuzzy variables.
'''
temp_partitions = []
unique_time_moments = np.unique(time_moments)
for time in unique_time_moments:
X_obs = X_train[time_moments == time, :]
precomputed_partitions = construct_partitions(X_obs, fuzzy_type)
temp_partitions.append(create_tempVariables(X_obs, time_moments[time_moments == time], precomputed_partitions))
return temp_partitions
[docs]
def temporal_cuts(X: pd.DataFrame, cutpoints: list[tuple[str, str]], time_resolution: str='hour') -> list[np.array]:
'''
Returns a list of boolean indexes for each temporal moment. Performs the cuts between time steps using the cutpoints list.
:param X: data observations to cut in temrporal moments.
:param temporal_moments: list of temporal moments to cut.
:param cutpoints: list of tuples with the cutpoints for each temporal moment.
:param time_resolution: time field to use as the criteria.
:return: list of boolean arrays. True values are those contained between the cutpoints in each moment.
'''
res = []
for ix, cutpoint in enumerate(cutpoints):
observations = classify_temp(X, cutpoint, time=time_resolution)
res.append(observations)
return res
[docs]
def temporal_assemble(X: np.array, y:np.array, temporal_moments: list[np.array]):
'''
Assembles the data in the temporal moments in order to have partitions with balanced time moments in each one.
:param X: data observations.
:param y: labels.
:param temporal_moments: list of boolean arrays. True values are those contained between the cutpoints in each moment.
:return: tuple of lists of data and labels for each temporal moment.
First tuple is: X_train, X_test, y_train, y_test
Second tuple is: train temporal moments, test temporal moments.
'''
moments_partitions = []
train_temporal_boolean_markers = []
test_temporal_boolean_markers = []
train_counter = 0
test_counter = 0
for ix, temporal_moment in enumerate(temporal_moments):
X_train, X_test, y_train, y_test = train_test_split(X[temporal_moment], y[temporal_moment], test_size=0.33, random_state=0)
moments_partitions.append((X_train, X_test, y_train, y_test))
if isinstance(X_train,(pd.core.series.Series,pd.DataFrame)):
X_train = pd.concat([moments_partitions[ix][0] for ix in range(len(moments_partitions))])
X_test = pd.concat([moments_partitions[ix][1] for ix in range(len(moments_partitions))])
y_train = np.concatenate([moments_partitions[ix][2] for ix in range(len(moments_partitions))])
y_test = np.concatenate([moments_partitions[ix][3] for ix in range(len(moments_partitions))])
else:
X_train = np.concatenate([moments_partitions[ix][0] for ix in range(len(moments_partitions))])
X_test = np.concatenate([moments_partitions[ix][1] for ix in range(len(moments_partitions))])
y_train = np.concatenate([moments_partitions[ix][2] for ix in range(len(moments_partitions))])
y_test = np.concatenate([moments_partitions[ix][3] for ix in range(len(moments_partitions))])
for ix, temporal_moment in enumerate(temporal_moments):
# Believe, this makes sense to avoid rounding errrors in the size of the final vector
_, _, y_train0, y_test0 = train_test_split(X[temporal_moment], y[temporal_moment], test_size=0.33, random_state=0)
train_moment_observations = np.zeros((X_train.shape[0]))
train_moment_observations[train_counter:train_counter+len(y_train0)] = 1
train_counter += len(y_train0)
train_temporal_boolean_markers.append(train_moment_observations)
test_moment_observations = np.zeros((X_test.shape[0]))
test_moment_observations[test_counter:test_counter+len(y_test0)] = 1
test_counter += len(y_test0)
test_temporal_boolean_markers.append(test_moment_observations)
return [X_train, X_test, y_train, y_test], [train_temporal_boolean_markers, test_temporal_boolean_markers]
[docs]
def extend_fuzzy_sets_enum(new_fuzzy_sets_enum: fs.FUZZY_SETS) -> list[fs.FUZZY_SETS]:
'''
Extends the fuzzy sets enum with additional types.
:param fuzzy_sets_enum: fuzzy sets enum.
:return: extended fuzzy sets enum.
'''
import enum
NEW_FUZZY_SETS = enum.Enum(
"FUZZY_SETS",
[(es.name, es.value) for es in fs.FUZZY_SETS] + [(es.name, es.value) for es in new_fuzzy_sets_enum]
)
fs.FUZZY_SETS = NEW_FUZZY_SETS
[docs]
def mcc_loss(ruleBase: rules.RuleBase, X:np.array, y:np.array, tolerance:float, alpha:float=0.99, beta:float=0.0125, gamma:float=0.0125, precomputed_truth=None) -> float:
'''
Fitness function for the optimization problem. Uses only the MCC, ignores the size penalization terms.
:param ruleBase: RuleBase object
:param X: array of train samples. X shape = (n_samples, n_features)
:param y: array of train labels. y shape = (n_samples,)
:param tolerance: float. Tolerance for the size evaluation.
:param alpha: ignored.
:param beta: ignored.
:param gamma: ignored.
:return: float. Fitness value.
'''
ev_object = evr.evalRuleBase(ruleBase, X, y, precomputed_truth=precomputed_truth)
ev_object.add_rule_weights()
score_acc = ev_object.classification_eval()
return score_acc