ex_fuzzy.classifiers.RuleMineClassifier#
- class ex_fuzzy.classifiers.RuleMineClassifier(nRules=30, nAnts=4, fuzzy_type=None, tolerance=0.0, verbose=False, n_class=None, runner=1, linguistic_variables=None)[source]#
Bases:
ClassifierMixin
A classifier that works by mining a set of candidate rules with a minimum support, confidence and lift, and then using a genetic algorithm that chooses the optimal combination of those rules.
- __init__(nRules=30, nAnts=4, fuzzy_type=None, tolerance=0.0, verbose=False, n_class=None, runner=1, linguistic_variables=None)[source]#
Inits the optimizer with the corresponding parameters.
- Parameters:
nRules (int) – number of rules to optimize.
nAnts (int) – max number of antecedents to use.
type (fuzzy) – FUZZY_SET enum type in fuzzy_sets module. The kind of fuzzy set used.
tolerance (float) – tolerance for the support/dominance score of the rules.
verbose – if True, prints the progress of the optimization.
n_class (int) – number of classes in the problem. If None (default) the classifier will compute it empirically.
runner (int) – number of threads to use.
linguistic_variables (list[fuzzyVariable]) – linguistic variables per antecedent.
- fit(X, y, n_gen=30, pop_size=50, **kwargs)[source]#
Trains the model with the given data.
- Parameters: