Skip to main content
Ctrl+K

Ex-Fuzzy

  • Getting Started
  • Installation
  • User Guide
  • Examples
  • API Reference
    • Fuzzy Sets
    • Classifiers Module
    • Evolutionary Fit Module
    • Evaluation Tools Module
    • Contributing
    • Changelog
    • Roadmap
    • Getting Started
    • Creating fuzzy sets and fuzzy variables
    • Using Fuzzy Rules
    • Optimizing a Fuzzy rule base for a classification problem
    • Visualize rules and results
    • Computing fuzzy partitions
    • Genetic algorithm details
    • General Type 2
    • Temporal Fuzzy Sets
    • Extending Ex-Fuzzy
    • Persistence
    • Advanced classifiers
    • Bootstrapping and rule robustness
  • GitHub
  • PyPI
  • Getting Started
  • Installation
  • User Guide
  • Examples
  • API Reference
  • Fuzzy Sets
  • Classifiers Module
  • Evolutionary Fit Module
  • Evaluation Tools Module
  • Contributing
  • Changelog
  • Roadmap
  • Getting Started
  • Creating fuzzy sets and fuzzy variables
  • Using Fuzzy Rules
  • Optimizing a Fuzzy rule base for a classification problem
  • Visualize rules and results
  • Computing fuzzy partitions
  • Genetic algorithm details
  • General Type 2
  • Temporal Fuzzy Sets
  • Extending Ex-Fuzzy
  • Persistence
  • Advanced classifiers
  • Bootstrapping and rule robustness
  • GitHub
  • PyPI

Section Navigation

  • ex_fuzzy.fuzzy_sets
  • ex_fuzzy.evolutionary_fit
  • ex_fuzzy.rules
  • ex_fuzzy.classifiers
  • ex_fuzzy.eval_tools
  • ex_fuzzy.pattern_stability
  • ex_fuzzy.vis_rules
  • ex_fuzzy.cognitive_maps
  • ex_fuzzy.temporal
  • ex_fuzzy.utils
  • ex_fuzzy.persistence
  • ex_fuzzy.bootstrapping_test
  • ex_fuzzy.eval_rules
  • ex_fuzzy.evolutionary_fit.BaseFuzzyRulesClassifier
  • ex_fuzzy.fuzzy_sets.fuzzyVariable
  • ex_fuzzy.fuzzy_sets.FS
  • ex_fuzzy.rules.RuleSimple
  • ex_fuzzy.rules.RuleBase
  • ex_fuzzy.eval_tools.FuzzyEvaluator
  • ex_fuzzy.vis_rules.plot_fuzzy_variable
  • ex_fuzzy.pattern_stability.pattern_stabilizer
  • ex_fuzzy.fuzzy_sets.FS
  • ex_fuzzy.fuzzy_sets.gaussianFS
  • ex_fuzzy.fuzzy_sets.gaussianIVFS
  • ex_fuzzy.fuzzy_sets.categoricalFS
  • ex_fuzzy.fuzzy_sets.fuzzyVariable
  • ex_fuzzy.evolutionary_fit.BaseFuzzyRulesClassifier
  • ex_fuzzy.classifiers.RuleMineClassifier
  • ex_fuzzy.rules.RuleSimple
  • ex_fuzzy.rules.RuleBase
  • ex_fuzzy.rules.MasterRuleBase
  • ex_fuzzy.rules.generate_rule_string
  • ex_fuzzy.eval_tools.FuzzyEvaluator
  • ex_fuzzy.vis_rules.plot_fuzzy_variable
  • ex_fuzzy.pattern_stability.pattern_stabilizer.pie_chart_basic
  • ex_fuzzy.persistence.save_fuzzy_variables
  • ex_fuzzy.persistence.load_fuzzy_variables
  • ex_fuzzy.fuzzy_sets.FUZZY_SETS
  • Fuzzy Sets
    • ex_fuzzy.fuzzy_sets.FS
    • ex_fuzzy.fuzzy_sets.gaussianFS
    • ex_fuzzy.fuzzy_sets.gaussianIVFS
    • ex_fuzzy.fuzzy_sets.categoricalFS
    • ex_fuzzy.fuzzy_sets.fuzzyVariable
    • ex_fuzzy.fuzzy_sets.FUZZY_SETS
    • ex_fuzzy.fuzzy_sets.FS.membership
  • Classifiers Module
    • ex_fuzzy.classifiers.RuleMineClassifier
  • Rules Module
    • ex_fuzzy.rules.RuleSimple
    • ex_fuzzy.rules.RuleBaseT1
    • ex_fuzzy.rules.RuleBaseT2
    • ex_fuzzy.rules.RuleBaseGT2
    • ex_fuzzy.rules.MasterRuleBase
    • ex_fuzzy.rules.compute_antecedents_memberships
  • Evolutionary Fit Module
    • ex_fuzzy.evolutionary_fit.FitRuleBase
  • Rule Mining Module
    • ex_fuzzy.rule_mining.rule_search
    • ex_fuzzy.rule_mining.generate_rules_from_itemsets
    • ex_fuzzy.rule_mining.mine_rulebase_support
    • ex_fuzzy.rule_mining.prune_rules_confidence_lift
    • ex_fuzzy.rule_mining.simple_mine_rulebase
    • ex_fuzzy.rule_mining.multiclass_mine_rulebase
    • ex_fuzzy.rule_mining.simple_multiclass_mine_rulebase
  • Evaluation Tools Module
    • ex_fuzzy.eval_tools.FuzzyEvaluator
    • ex_fuzzy.eval_tools.eval_fuzzy_model
  • API Reference
  • Rule Mining Module
  • ex_fuzzy.rule_mining.rule_search

ex_fuzzy.rule_mining.rule_search#

ex_fuzzy.rule_mining.rule_search(data, fuzzy_variables, support_threshold=0.05, max_depth=None)[source]#

Computes the apriori algorithm for the given dataframe and threshold the support.

Parameters:
  • data (DataFrame) – Dataframe of shape: samples x features

  • variables (fuzzy) – dict that maps each feature name with a fuzzy variable.

  • support_threshold (float) – minimum support to consider frequent an itemset.

Returns:

all the frequent itemsets as a list.

Return type:

list

On this page
  • rule_search()

This Page

  • Show Source

© Copyright 2023-2025, Javier Fumanal Idocin.

Created using Sphinx 8.1.3.