Classification evaluation tools
Functions that contain some general functions to eval already fitted fuzzy rule based models. It can also be used to visualize rules and fuzzy partitions.
- class ex_fuzzy.eval_tools.FuzzyEvaluator(fl_classifier: BaseFuzzyRulesClassifier)[source]
Bases:
object
Takes a model and associated data and permits rule evaluation
- eval_fuzzy_model(X_train: array, y_train: array, X_test: array, y_test: array, plot_rules=True, print_rules=True, plot_partitions=True, return_rules=False, print_accuracy=True, print_matthew=True, export_path: str = None) None [source]
Function that evaluates a fuzzy rule based model. It also plots the rules and the fuzzy partitions.
- Parameters:
X_train – Training data.
y_train – Training labels.
X_test – Test data.
y_test – Test labels.
plot_rules – If True, it plots the rules.
print_rules – If True, it prints the rules.
plot_partitions – If True, it plots the fuzzy partitions.
- Returns:
None
- get_metric(metric: str, X_true: array, y_true: array, **kwargs) float [source]
- Parameters:
metric – named metric in string format available in sklearn library for evaluation
X_true – np.array of X values for prediction
y_true – np.array of true class outcomes for X values
**kwargs –
additional arguments for different sklearn.metrics functions